– Impact of the Wetting Length on Flexible Blade Spreading
Marion Krapez, Anaïs Gauthier, Hamid Kellay, Jean-Baptiste Boitte, Odile Aubrun, Jean-François Joanny, and Annie Colin
Phys. Rev. Lett. 125, 254506 – Published 18 December 2020
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.254506
Résumé :
We study the spreading of a Newtonian fluid by a deformable blade, a common industrial problem, characteristic of elastohydrodynamic situations. Here, we consider the case of a finite reservoir of liquid, emptying as the liquid is spread. We evidence the role of a central variable : the wetting length l_w, which sets a boundary between the wet and dry parts of the blade. We show that the deposited film thickness e depends quadratically with l_w. We study this problem experimentally and numerically by integration of the elastohydrodynamic equations, and finally propose a scaling law model to explain how l_w influences the spreading dynamics.
Impact of the Wetting Length on Flexible Blade Spreading, PRL, 2020. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.254506