Interparticle friction and Rheology of Dense suspensions

PhD candidate: Anh Vu NGUYEN LE

Supervisor : Annie Colin Jury members: Hugues BODIGUEL Frédéric BLANC Michel CLOITRE Laurence TALINI Guillaume OVARLEZ

Outline

- **BACKGROUND ON THE RHEOLOGY OF DENSE SUSPENSIONS:** Important but not well-understood role of particle friction μ_p .
- > AIM OF MY THESIS:

Evidencing the relation between μ_p and **rheology**.

> MATERIALS UNDER SCRUTINY:

Polystyrene (PS) beads in various matrix fluid.

METHODS OF CHARACTERIZATION: Tuning-fork force microscope (TFM) and Rheometry.

RESULTS AND **DISCUSSIONS**:

How different μ_p profiles explains different rheological behaviors.

CONCLUSION AND OUTLOOKS:

The importance of studying μ_p in **rheology.**

BACKGROUND What is a suspension?

'Solid particles suspended in a liquid'

Cornstarch

makes sauce or grav

thicker.

Credit: Google image Handbook of Flexible Organic Electronics Great interest in studying suspensions' flow

Dense suspension = high solid fraction $\phi = \frac{V_{solid}}{V}$ **V**_{total}

Simplification:

Smooth hard spheres

Newtonian fluid

25/10/2021

PhD defense Anh Vu NGUYEN LE

What is Rheology?

'Study of flow'. How?

Flow curves

Non-Newtonian behaviors

An example: Flow curves of PVC particles suspended in DINCH plasticizer

25/10/2021

PhD defense Anh Vu NGUYEN LE

BACKGROUND **Dimensional analysis**

Rheological parameters

- *d* : particle diameter
- ρ_p : particle density
- *n* : number concentration
- ρ_f : fluid density
- η_f : fluid viscosity
- $\dot{\gamma}$: shear rate
- k_BT : thermal energy

7 variables with 3 units: [kg] [m] [s]

Buckingham π theorem

Only 7 - 3 = 4 dimensionless variables left:

$$Re = \frac{\rho_f \dot{\gamma} d^2}{\eta_f} \quad Pe = \frac{3\pi \eta_f \dot{\gamma} d^3}{4k_B T} \quad Sh = \frac{\eta_f \dot{\gamma}}{\Delta \rho g d} \quad \phi = n \frac{\pi}{6} d^3$$
Viscous vs Inertial Viscous vs Brownian Viscous vs Gravity Solid fraction

Density-matched: $Sh \gg 1$ Non-Brownian: Pe

$$i \gg 1$$

 $e \gg 1$

Pe

As Gravity Solid fraction
$$\mathbf{r} = \mathbf{f} (\mathbf{P} \mathbf{a}, \mathbf{f})$$

$$\eta_s = f_{\eta}(Re, \phi)$$

with $\eta_s = \eta/\eta_f$

2 flow regimes:

Re

Brownian, Non-Brownian, high Reynolds high Reynolds Brownian, Non-Brownian, low Reynolds low Reynolds: Newtonian-like

Inertial regime

Viscous regime

Inertial regime (high Re)

Inertia dominates:

Only 4 particle-related parameters:

 ρ_d , d, n, $\dot{\gamma} \rightarrow 1$ dimensionless number

The paradigm of dense granular matter:

Da Cruz et al., Phys. Rev. E (2005)

$$I = d\dot{\gamma} \sqrt{\frac{\rho_p}{P^P}}$$

Re

2 behavior laws:

$$\begin{cases} \phi = g(I) \\ \sigma = f(I)P^{P} \end{cases} \rightarrow \sigma = f(g^{-1}(\phi)) \frac{\rho_{p}d^{2}}{(g^{-1}(\phi))^{2}} \dot{\gamma}^{2}$$

 $\sigma = A(\phi)\dot{\gamma}^2$: if ϕ is constant, σ varies as a function of $\dot{\gamma}^2$. At high *Re*: Suspensions will shear thicken.

Non-Brownian, Brownian, high Reynolds high Reynolds Brownian, low Reynolds

Viscous regime (low Re)

Viscous effects dominate:

Only 4 fluid-related parameters:

d, η_f , *n*, $\dot{\gamma} \rightarrow 1$ dimensionless number

Borrowing from granular-matter paradigm:

Boyer et al., PRL (2011)

2 behavior laws:

25/10/2021

$$\begin{cases} \phi = g(I_v) \\ \sigma = f(I_v)P^P \end{cases} \rightarrow \sigma = f(g^{-1}(\phi)) \frac{\eta_f}{g^{-1}(\phi)} \dot{\gamma}$$

 $\sigma = \eta_s(\phi) \eta_f \dot{\gamma}$: if ϕ is constant, σ will be proportional to $\dot{\gamma}$. At low *Re*: Suspensions should behave as Newtonian fluid.

Brownian. high Reynolds Non-Brownian, Brownian, low Reynolds low Reynolds: **Newtonian-like**

Re

9

Dependence $\eta_s(\phi)$ on μ_p

 $\eta_s(\phi)$ curve shifts leftward when particle friction coefficient μ_p increases.

The role of μ_p is crucial but experimental data on μ_p is still lacking.

Shear Thickening

Explanation: Shear-induced transition from Low-friction profile (soft/no contact) to High-friction profile (hard contact)

Shear Thinning

Explanation: Decrease of μ_p with increasing normal load F_n

Open questions

1. Is something else missing in the rheological description?

- Well-established theoretical framework for suspension of smooth hard non-Brownian spheres.
- But lack of experimental data on μ_p to explain their rheology.

Ovarlez et al.: How to explain the lateral shift of the $\eta_s(\phi)$ curves as a function of the solvent?

- 2. How does shear-thickening occur even in the frictionless state?
- 3. How do shear-thickening suspensions flow in the frictional state?

AIM OF MY THESIS

Response

2. FRICTIONLESS SHEAR-THICKENING OCCURS AT HIGH Re:

Viscous-to-inertial transition can occur before repulsive-to-frictional transition.

PhD defense Anh Vu NGUYEN LE

Response

3. INSTABILITY DURING SHEAR-THICKENING TRANSITION:

Density waves propagating in the velocity direction

generate shear instabilities.

PhD defense Anh Vu NGUYEN LE AIM OF MY THESIS

Response

1. THE ROLE OF SOLVENT ON THE RHEOLOGICAL BEHAVIORS :

What is the influence of solvent on the $\eta_s(\phi)$ curves?

What is the description at the microscopic level (F_N^C , F_T^D , and μ_p)

How the dependence of μ_p on normal load results in shear thinning?

Particle cleaning

Polystyrene (PS) spheres, $R = 20 \ \mu m$

SEM micrograph of washed PS spheres

Washing process:

- Sonicate the raw beads in deionized water.
- Replace regularly the bathwater.
- Filter out the 'creamed' beads. (Pickering emulsion).
- Dry at 70°C until becoming powder-like.

Suspension preparation

Solvents

Nal solution,

(density-matched)

Silicone oil,

PEG,

 $\eta_f \approx 20 \text{ mPa s}$

 $\eta_f \approx 1 \text{ mPa s}$

 $\eta_f pprox 2000 \text{ mPa s}$

Newtonian fluids

(Poly(ethylene glycol-ran-propylene glycol) mono-butyl ether)

Preparation protocol:

- Weigh the particles.
- Add the solvent.
- Homogenize the mixture
- Degas the mixture using vacuum (if not water-based)
- Homogenize the mixture before each rheometric measurement.

Tuning-fork force microscope (TFM)

2 setups for 2 force scales:

With quartz tuning fork (TF):

Prongs' dimension:

L = 3.75 mm, W = 0.34 mm,

T = 0.6 mm

Quartz TF is 20 times smaller than aluminum TF.

Principle of TFM

Models:

WITHOUT interactions between particles:

- Resonate at a frequency f_0
- Require an excitation voltage E_0 (to maintain a constant oscillation amplitude A)

WITH interactions between particles:

- Resonate at a frequency f(z)
- Require an excitation voltage E(z)
 (to maintain the same amplitude A)

 F_N^C : Normal conservative force (elastic force)

 F_T^D : Tangential dissipative force (frictional force)

$$F_{N}^{C}(z) = -2 \frac{k_{0}^{N}}{f_{0}^{N}} \int \delta f^{N}(z) dz$$

$$F_{T}^{D}(z) = \frac{4}{\pi} C^{T} \left(E^{T}(z) - E_{0}^{T} \right)$$

$$2 \text{ modes}$$

$$are$$

$$decoupled$$

Determination of z = 0

 $z = z_{raw} - z_0$. z_0 is the raw separation where E_T rises out of the noise. 0.162 0.2 0.1615 0.19 $E_T^{T}(\mathbf{V})$ 0.161 Pre- contact E) E) Noise level 0.1605 0.17 Postcontact 0.16 -4.85 -4.75 -4.7 -4.9 -4.8 -4.7 $z_{\rm raw} \ (\mu {\rm m})$ $z_{\rm raw} \ (\mu {\rm m})$

Incorrect z = 0 results in artifacts on repulsive force before contact, but no effect on μ_P .

Thermal drift correction: for $\delta F_N^C(z)$ and $E_T(z)$

- Apply a linear fit for the signals before contact.
- Subtract the fit value from raw data.
- Calculate the forces using the resulting value.

No significant change in noise level at $\eta_f \le 20$ mPa s. For $\eta_f = 2000$ mPa s, $E_T(z)$ is roughly 2 times noisier.

Noise and measure bias

Possible source of noise:

- High humidity
- \rightarrow Counteracted by placing dehydrator in the measuring chamber.
- Acoustic and mechanical vibration
- \rightarrow Counteracted by using acoustic box, anchor, and anti-vibration table.

Electronic noise

- \rightarrow Negligible compare the force scale of interest.
- Thermal noise (negligible at our scale).
- Noise from motors inside the chamber (negligible at our scale).

Possible bias:

• Starting and ending point of the linear fit for the thermal drifts.

METHODS Rheometry

Silicone oil

$F_N(z)$ model: $F_N^C = f(z, E_0, h_r)$
Soft
surface

Z	E ₀	h_r
0 nm - 15 nm	1 GPa	15 nm
15 nm - 50 nm	1 GPa	90 nm
50 nm - center	3 GPa	530 nm

Silicone oil

No sign of repulsive force

 \rightarrow Quasi-unstable suspension (with very low yield stress)

Close to z = 0, Hertz model with either low contact radius (from asperities) or low Young modulus.

PARIS UK

Nal solution

Presence of repulsive forces.

Repulsion added to the force profile after contact.

Nal solution

Debye length $\lambda_D = 0.4 \text{ nm}$ for solution of I = 0.5136 M \rightarrow Not ionic repulsion. Must be of steric origin.

At high overlap, Hertz model with the Young modulus of PS.

PEG

PS particles swell in PEG.

Swelling increases with the submerged duration (1h – 24h).

Swelling modifies the solid fraction: $\phi_{eff} = \beta \phi$.

PEG

z = 0 is determined by the same method as before.

Normal load are more 2 orders of magnitude higher than Friction.

$\mu_p(F_N)$ -profile in oil

Silicone oil

 μ_p decreases with increasing F_N .

Fit for the dependence of $\mu_p(F_N)$: $\mu_p = 0.2 \operatorname{coth}(2.5 F_N^{0.5})$

Nal solution

 μ_p is constant despite of increasing F_N .

 \rightarrow The small repulsive forces must have plateaued $\mu_p(F_N)$ profile.

$$\mu_p \approx 0.2$$

Flow curves

Nal solution

Inertial regime starts from $\dot{\gamma} \approx 3 \text{ s}^{-1}$.

In the inertial regime: Newtonian behavior.

RESULTS & DISCUSSION Flow curves

PEG, between 2 cross-hatched plates

Old sample (>24h)

Aged PEG suspension is elastic-like: proof of swelling effect.

Apparent shear thinning: NOT from the variation of μ_p , but from squeezing effect of the shear of the swelled layer.

Flow curves

Silicone oil

Presence of a small yield stress: quasi-unstable suspension \rightarrow data at $\sigma < 10 \sigma_{\text{yield}}$ are not valid for force analysis.

Shear thinning originates from the reducing of μ_p with F_N .

RESULTS & DISCUSSION Rheology vs AFM Si. Oil

From $\eta_s(\sigma)$ and $\mu_p(F_N)$

Arshad et al., Soft Matter (2021)

to $\eta_s(\phi)$ showing the dependence ϕ_I on μ_p

Model:

RESULTS & DISCUSSION Rheology vs AFM Si. Oil

The dependence of ϕ_m on μ_p

Fit from Chèvremont et al., PRF (2020):

$$\phi_J = \phi_J^{\mu_p=0} - \left(\phi_J^{\mu_p=0} - \phi_J^{\mu_p=\infty}\right) \left[1 - \exp(X_p \mu_p)\right]$$

with $\phi_J^{\mu_p=0} = 0.64, \phi_J^{\mu_p=\infty} = 0.5415, X_p = 2.8$

RESULTS & DISCUSSION Rheology vs AFM PEG

to $\eta_s(\phi)$

High shear stresses reduce β \rightarrow shear forces squeeze the swelled layer.

RESULTS & DISCUSSION Rheology vs AFM Nal sol.

From $\eta_s(\sigma)$ and $\mu_p(F_N)$

In inertial regime, there is no role of contact.

There is no-known fit for $\eta_s(\phi)$.

CONCLUSION & OUTLOOKS Conclusion: the importance of μ_p

Solvents heavily impact the characteristics of particle contact, via F_N^C , F_T^D , and μ_p .

Experimental evidence of the role of decreasing μ_p on shear thinning behavior.

By transitioning from frictionless to inertial regime, shear thickening can occur even without friction.

During the transition from frictionless state to frictional state, dense suspensions flow imhomogeneously in the form of density waves.

Outlooks: Vibrations

Particles force profiles under vibrations:

- Will the added vibrations generate repulsive forces before contact?
- Will they alter the force profile during contact?

Rheological behaviors under vibrations:

Low amplitude – High frequency for colloidal suspension High amplitude – Low frequency for granular suspension

Reducing viscosity: What is interplay between vibrations and friction force.

(collaboration with LoF, Bordeaux)

MERCI DE VOTRE ATTENTION!

Calibration of TFM

PARIS LE

Aluminum TF:

Parameters	Normal mode	Tangential mode	
Static stiffness k_0	480000 N m^{-1}	154000 N m^{-1}	•
typical Resonating frequency f_0	1400 Hz	700 Hz	2 mo
typical Q factor Q_0 (in air)	3000 - 2000	600 - 400	uec
Typical Accelerometer factor $C_{ m accel}$	$0.430 \ \mu m \ V^{-1}$	$1.720 \ \mu m \ V^{-1}$	
typical Driving factor C_{drive}	50 nm V^{-1}	100 nm V^{-1}	
typical Force transduction factor C	$10 \ \mu N \ V^{-1}$	$30 \ \mu N \ V^{-1}$	C = -

typical Resonance curves:

2 modes are decoupled

 $C = \frac{k_0}{Q_0} C_{\text{drive}}$

METHODS Calibration of TFM

PARIS

Quartz TF:

Parameters	Normal mode	Tangential mode	
Static stiffness k_0	26630 N m^{-1}	8550 N m^{-1}	
typical Resonating frequency f_0	29000 Hz	16000 Hz	2 modes
typical Q factor Q_0 (in air)	3000 - 2000	600 - 400	decoup
Typical Accelerometer factor C_{elect}	50 nm V^{-1}	2950 nm V^{-1}	
typical Driving factor C _{drive}	300 nm V ⁻¹	300 nm V^{-1}	1
typical Force transduction factor C	$5 \ \mu N \ V^{-1}$	$10 \ \mu N \ V^{-1}$	$C = \frac{k_0}{O} C_0$

typical **Resonance curves:**

Effect of changing *Q* **and** *k*

Fig. 2. Amplitude resonance curves for four values of Q (same k) and six values of k (same Q) increasing from left to right.

Fig. 3. Phase resonance curves for four values of Q (same k) and six values of k (same Q) increasing from left to right.

Principe of PLL

Silicone oil

$F_N(z)$ model: $F_N^C = f(z, E_0, h_r)$
Soft
surface

Z	E ₀	h_r
0 nm - 15 nm	1 GPa	15 nm
15 nm - 50 nm	1 GPa	90 nm
50 nm - center	3 GPa	530 nm

\ **7**

The aims:

Measure Load-dependent variation of Friction coefficient Compare with the simulation of Lemaire's group

Lobry et al., J. Fluid Mech. (2019)

Contact between a single asperity and a smooth surface

 $F_N(z)$ model :

$$\boldsymbol{F}_{n} = -L_{c} \left(\frac{\delta}{\delta_{c}}\right)^{3/2} \left[1 - \exp\left(\frac{1}{1 - \left(\frac{\delta}{\delta_{c}}\right)^{\beta}}\right)\right] \boldsymbol{n},$$

Stokes force:

$$\boldsymbol{F}_{\boldsymbol{N}} = \frac{1}{1.69} 6\pi \eta_0 \eta_s R^2 \dot{\boldsymbol{\gamma}}$$
$$= \frac{1}{1.69} 6\pi R^2 \boldsymbol{\sigma}$$

with

 η_0, η_s : fluid viscosity, relative viscosity L_c, δ_c : critical load and overlap (which are functions of E_0 and h_r) E_0 : elastic modulus, h_r : asperity height.

Nal solution

Z	E ₀	h_r
0 nm - 23 nm	3 GPa	20 nm
23 nm - center	3 GPa	300 nm

Shear reversal

PS particles in Silicone oil

Shear reversal

PS particles in **PEG**

Shear reversal

PS particles in **Nal solution**

Approach-Retract

PS particles in Silicone oil

Approach-Retract

PS particles in **PEG**

Approach-Retract

PS particles in **Nal solution**

Resolts Raw-Clean differences

PS particles in Silicone oils

Raw d140 in Oil20

Clean d40 in Oil5

Resolts Raw-Clean differences

PS particles in **Nal**

