ESPCI 🖻 PARIS | PSL🐋

Capacitive reverse electrodialysis cells for osmotic energy harvesting: Toward real brines and power enhancement

PH.D. DEFENSE 18/09/2

18/09/2024

NAN WU LAB OF MIE-CBI ESPCI PARIS PSL

SUPERVISOR

ANNIE COLIN

JURY MEMBERS Marie-Caroline Jullien Cyril Picard Virginie Lair Véronique Balland Mikhael Bechelany Michael Levant

Introduction

Osmotic energy and its harvesting technologies

Boosting strategy

Towards power density amelioration

3

5

OUTLINE

Divalent ion mixing impact

Towards real brine application

pH gradient cell

Towards pH based osmotic energy harvesting

Conclusion and Perspectives

© 01 Introduction

Brief introduction of osmotic energy and its harvesting technologies

01.1 Global warming and energy crisis

Human activities are responsible for global warming

Sources: IPCC 2023 report

Ember Global Electricity Review 2023

Energy transition

Wind and solar hit 12% of global power; an era of fossil decline is about to begin

Projections

Electricity generation (TWh, 000s)

50

60

Image Credit: Peter Bocklandt/Shutterstock.com

Osmotic Energy

The Gibbs free energy of mixing released by combining two solutions of different salinities.

Enormous potential

- **Considering all the sites** Estimation of 2.4 Terawatts
- Considering easily accessible sites
 Estimation of 0.1 Terawatts ~ 3% World electricity power

Blue Energy harvesting technologies

Sources: Wu et al. Lab on a Chip 2023 Wu et al. Nano Energy 2023

Figure 1 Energy harvesting procedure via PRO technologies

Sources: Logan, B. E. and M. Elimelech. Nature 2012

PRO Pressure retarded osmosis

Semipermeable membrane:

Free passage of water molecules Block of passage of ions

Pressurization in salt water chamber:

Water flux from fresh water chamber to seawater chamber

Energy conversion by turbines:

Depressurization process by accessary installations (turbines) Energy conversion from hydrostatic potential to electricity

State-of-art performance:

 $9 \text{ W.m}^{-2} < 25 \text{ W.m}^{-2}$ (Commercialization threshold) High cost of accessory systems (turbines, pumps, and etc.) ₆

Figure 2 Working principle of energy harvesting by RED

Sources: Logan, B. E. and M. Elimelech. Nature 2012

RED Reverse Electrodialysis

Ion-exchange membrane:

Free passage of counter-ions Block of passage of co-ions and water molecules

Directional ion flux through membranes:

Directional ion flux under osmotic effects through membranes <u>lon flux</u> from saltwater chamber to freshwater chamber Stacks of CEM and AEM enable the voltage addition

Energy conversion by redox reactions:

Conversion of ionic flux towards electric flux by redox reactions Energy conversion from osmotic potential to electricity

State-of-art performance:

Pilot-scale RED plant 0.5 W.m⁻² Toxic electrolytes and overpotential problems

Figure 3 The 4-step energy harvesting via CDLE

Sources: Zou et al. Energy Reports 2022

Capmix Capmixing

CDLE (capacitive energy extraction based on double layer expansion)

4-step process using capacitive electrodes:

Step1 Seawater compartment + electrode charging
Step2 Conversion into freshwater + EDL expansion
Step3 Freshwater compartment + electrode discharging
Step4 Conversion into seawater + EDL compression

Capacitive currents:

Conversion of ionic flux towards electronic flux by capacitive electrodes

Advantages:

Suppression of redox reaction related problems Low cost of carbon based capacitive electrodes

State-of-art performance:

Power density $\sim 0.1 \text{ W}.\text{m}^{-2}$

Comparison

PRO

Pressure Retarded Osmosis Highest power density High cost of accessory systems

RED

Reverse Electrodialysis

High power density Redox reaction related problems (toxic electrolytes; overpotential

problems; environmental impact)

Capmix

Capmixing

Low cost; No redox reactions Low power density

Combining RED system with capacitive electrodes:

Wonderful combination at the crossroad of RED and Capmixing : previous thesis work of Dr. Brahmi Youcef

Capmix Low cost; No reaction Low power density

Capacitive RED cell

✓ Ion-exchange membranes ('RED')

Directional ionic flux creation under osmotic effect Possibility of using stacks

✓ Capacitive electrodes ('Capmixing')

Capacitive electrodes charging by ion adsorption Avoidance of hazardous redox reactions

Sources: Y. Brahmi and A. Colin. Energy Conversion and Management 2022

Figure 4 The design of the CRED assembly

Working principle

Figure 5 The working principle of the CRED system

Image Credit: Youcef Brahmi, Thesis 2021

Ion-exchange membrane CEM:

Free passage of cations (Na⁺) Block of passage of anions (Cl⁻) and water molecules

Directional ionic flux:

Directional ionic flux under osmotic effects through membranes <u>lon flux</u> from saltwater chamber to freshwater chamber

OCV further enhanced by capacitive electrodes:

 $E_{ocv} = E_{mem} + E_{elec}$

Capacitive electrodes:

Conversion of ionic flux towards electronic flux by ion adsorption A blocking type electrode without redox reactions

Working principle

Capacitive current decay:

Ionic flux will be slowed down and eventually reaches a saturation regime Blocking electrodes requires concentration reversal to deblock this state

Chamber switch to deblock saturation regime:

Necessity of water chamber switch to deblock the saturation Creation of alternating periodic capacitive currents

Figure 5 The working principle of CRED system

Image Credit: Youcef Brahmi, Thesis 2021

Figure 6 Direct connection of the resistor to the CRED system for power density measurement

Cell-Resistor circuit

Figure 7 Resistor voltage measurement curves as a function of time for different resistance.

$$P_{nb} = \frac{1}{S.T} \int_0^T \frac{E_R(t)^2}{R_{load}} dt$$

Summary

1 CRED: Reverse electrodialysis + Capacitive electrodes

O2 Alternating periodic output (switching)

)3 Direct connection to resistor for power density measurement

04 Power density amelioration ?

05 Lack of study in real world solutions ?

06 Generalization in other forms of osmotic energy ?

01.3 Thesis objective

Objective:

Investigate the <u>fundamental mechanism</u> of the CRED system, aiming to <u>enhance its energy performance</u> and broaden its range of <u>applications</u>.

Towards Power density amelioration

Towards Real brines Towards pH gradient based osmotic energy harvesting

JO2 Boosting strategy

Re North Contraction

Towards higher energy performance of CRED system.

02.1 Preamble

Eocv / Membrane selectivity Optimized electrode Salinity gradient ...

 E_{ocv}^2

 $\frac{1}{4R_{cell}}$

 P_{max}

R_{cell} Freshwater chamber Membrane resistance Polarization effect

. . .

Membrane Design

Abidin et al. Desalination 2022

<u>TAMANAN</u>

Coating layer

EM Coated IEM

Inter-distance optimization

Vermaas et al. Environmental Science & Technology 2011

Diffusio-osmotic streaming current

RED stacking

Wu et al. Lab on a Chip 2023

Local mixing

Vermaas et al. Journal of Membrane Science 2011

Scale up difficulty

17

02.1 Preamble

Ideal cell equivalent circuit

CRED cell equivalent circuit

Objective:

- Power density enhancement of capacitive cells
- Optimization of the collection of an ionic current and its transformation into an electric current using a capacitive electrode.

Boosting Principle

Sources: Y. Brahmi and A. Colin. Energy Conversion and Management 2022

02.2 Boosting strategy - Principles

Boosting system:

An alternating voltage power supply synchronized to the switching period of the salinity-gradient cell.

Net power density calculation:

$$P_{b-gross} = \frac{1}{S.T} \int_0^T \frac{E_R(t)^2}{R} dt$$
$$P_{b-boost} = \frac{1}{S.T} \int_0^T E_0(t) I(t) dt$$
$$P_{b-net} = P_{b-gross} - P_{b-boost}$$

Cell-Booster-Resistor circuit

(b) Phase 2: T < t < 2T

02.2 Boosting strategy - Principles

Figure 8 Salinity gradient of 0.17 mol.L⁻¹ and 5.17 mol.L⁻¹, flow rate of 10 mL/min, switching period of 45s, cation exchange membrane of Nafion 117 and boosting voltage of 0.8V. The chronovoltammetric measurement of E_{load} illustrated in (a) is for load resistance of 50 Ω .

P _{nb} Non-boosting Power density	P _{b-net} Boosting power density	Gain
3.29 W.m ⁻²	5.26 W.m ⁻²	59.8%

02.3 Boosting strategy - Models

Theoretical models by equivalent R-C circuits

<u>Figure 9</u> Comparison between theoretical model prediction and experimental data of the cell-resistor circuit and cell-booster-resistor circuit. Salinity gradient of 0.17 mol.L⁻¹ and 5.17 mol.L⁻¹, flow rate of 10 mL/min, switching period of 60s, cation exchange membrane of Nafion 117, and various boosting voltages.

Sources: Wu et al. Environmental Science & Technology 2023

02.4 Boosting strategy - Mechanism

Sources: Wu et al. Environmental Science & Technology 2023

02 Summary

Boosting system: electrical signal in 01 phase with switching period

Maximum net power density of 5.2 W/m² 02 reaching over 90% of P_{max}

03 Agreement between experimental data and theoretical model

04 Underlying mechanism

Divalent ion mixing impact

Towards real brines in industrial applications

03.1 Preamble

Towards complex solutions:

Mixing complex multi-valance ions inside the solutions injected in **<u>RED systems</u>**

Detrimental power density loss due to complex ion mixing Reported both at lab and industrial scale

RED: 75% power density drop (50% of divalent ions)

Sources: Vermaas et al. Energy & Environmental Science 2014 Veerman et al. Environmental Science & Technology 2010 Moreno et al. Journal of Membrane Science 2018 Tedesco et al. Journal of Membrane Science 2015

Uphill effect:

Ion valence difference results in differed membrane voltage

$$E_m = \frac{\alpha RT}{z_i F} \log \frac{a_{i,1}}{a_{i,2}}$$

 $E_{m,monovalent} = 2E_{m,divalent}$

 Emergence of a reversed transportation of multivalent ions against the concentration gradient

Membrane poisoning:

- Trapping of multivalent ions in the membrane
- It results in membrane selectivity decrease and electrical resistance increase.

02.1 Preamble

Current studies on CRED:

- System establishment and working principle
- Power density enhancement and mechanism
- All studies are conducted using artificial NaCl solutions

Objective

- Systematic study of CRED system performance under divalent ion mixing solutions
 - Underlying mechanism analysis
 - Economic analysis of CRED system towards industrial applications

03.2 Materials and methods

CRED Cell

Complex ion mixing solutions

Mixture of monovalent ions (NaCl) with divalent ions (CaCl₂ or $MgCl_2$)

03.3 Experimental results

Cell voltage drop

 E_m is severely influenced E_{elec} remains stable

Power density drop

Smaller power density drop in CRED! CRED: 34% power density drop RED: 62% power density drop

03.4 Mechanism

Sources: Vermaas et al. Energy & Environmental Science 2014

03.4 Mechanism

03.5 Towards Real solutions

Real solution measurements

Case 1: Artificial NaCl (80%) - CaCl2(20%) mixed solution; Nafion 117 Case 2: Production water; Nafion 117 Case 3: Artificial NaCl (40%) - CaCl2 (60%) mixed solution; Fumasep FS720

The power density variation after 8h of operation is within 6%.

03.6 Economic analysis

Analysis hypothesis:

RED membrane surface of 100 000 m2

Membrane lifetime is 7 years

Suppression of filtration cost

Production runs 8000 hours per year

Great salt lake with treated wastewater

Supplementary valves for water reversal

CRED system with a power of 3.2 W.m⁻²

Annual exploitation cost estimated as 9% of the construction cost

Current sPEEK

membrane cost

Post scenario:

River water-Sea water mixing case.

RED system with a power of 2 W.m⁻²

Membrane price at 2 euros per m²

Sources: Post et al. Journal of Membrane Science 2009

	Post scenario	A scenario	B scenario
Membrane cost (€)	254 000	6 000 000	1 500 000
Piping, fittings and pumps	406 400	406 400	406 400
(€)			
Valves (€)	0	150000	150000
Filtration (€)	469 900	0	0
Total (€)	1 130 300	6 556 400	2 056 400
Annual Costs (9%) (€)	101 727	590 076	185 076
Total (€)	1 232 027	7 146 476	2 241 476
Net Power (kW)	200	320	320
MWh cost (€)		399	125
	and the second se		

B scenario:

A scenario:

Membrane price at 15 euros per m2

Membrane price at 60 euros per m²

Future sPEEK membrane

Sources: Wu et al. Scientific Reports 2024

cost estimation

Solar Energy: 40 euros per MWh Wind off shore: 120 euros per MWh

03 Summary

Divalent ion mixing Divalent ion mixing results in cell voltage and power density drop in CRED system.

02 Uphill effect is responsible for the drop.

Membrane poisoning is suppressed by 03 water chamber reversal in CRED system

04 It is worthy of further developing CRED system according to economic analysis

© 04 pH gradient cell

Towards pH gradient based osmotic energy harvesting

04.1 Preamble

Objective:

- Generalization towards pH gradient based osmotic energy harvesting system
- Integration inside the carbon capturing & storage (CCS) process
- Energy performance increase by boosting strategy

Salinity based osmotic energy Na⁺ concentration

pH based osmotic energy H⁺ concentration

Integration inside CCS Boosting Strategy

04.2 Osmotic energy source in CCS

CO₂ Capture & Storage (CCS)

Sources: Alaba et al. International Journal of Precision Engineering and Manufacturing-Green Technology 2021 Garcia et al. Journal of Environmental Chemical Engineering 2022 Hamelers et al. Environmental Science & Technology Letters 2014

04.2 Osmotic energy source in CCS

CO₂ Capture

Energy source

Electricity

ENERGY SOURCE

ELECTRICITY PRODUCTION

04.3 pH gradient cell for energy harvesting

Figure 10 pH gradient based energy harvesting system.

Osmotic energy source:

 CO_2 gas capturing in carbonate solutions NaHCO₃ (1 M, pH = 7.8) vs. Na₂CO₃ (0.5 M, pH = 11. 7)

pH gradient based system:

Non-selective membrane is used to prevent direct solution mixing MnO_2 electrodes present prior selectivity for protons H⁺

Sources: Kim et al. Environmental Science & Technology Letters 2017

04.4 Energy performance

Figure 11 pH gradient based energy harvesting system coupled with a booster system.

Energy performance matched with capacitive equivalent circuit

Sources: Wu et al. In Preparation

80

04.4 Energy performance under boosting strategy

Net power density calculation:

$$P_{b-gross} = \frac{1}{S.T} \int_0^T \frac{E_R(t)^2}{R} dt$$
$$P_{b-boost} = \frac{1}{S.T} \int_0^T E_0(t) I(t) dt$$

$$P_{b-net} = P_{b-gross} - P_{b-boost}$$

Boosting principle works! MAX: 4.52 W.m⁻²

But BAD prediction of equivalent circuit

Sources: Wu et al. In Preparation

04.5 Mechanism discussion

Figure 12 pH gradient based energy harvesting system.

Faradaic or Capacitive?

Sources: Toupin et al. Chemistry of Materials 2004 Augustyn et al. Energy & Environmental Science 2014 Lee and Goodenough Journal of Solid State Chemistry 1999

<u>Sources:</u> Wu et al. In Preparation

Is this a redox reaction governed faradaic process?

- Electrode related electrical potential well described by Nernst Equation
- However, the system shows capacitive behavior

Is this an ion-adsorption governed capacitive process?

- Established capacitive equivalent circuit
- Capacitive behavior verified by impedance characterization
- Well prediction of energy performance by RC circuit
- However, the system presents a reversed electrical voltage

Faradaic process with capacitive behavior:

- Unique behavior occurred in some materials: **Surface faradaic reactions**
- Redox reactions occurred mainly at the electrode surface
- It presents certain capacitive behavior

 $MnO_2 + H^+ + e^- = MnOOH_{(s)}$

 $MnO_2 + HCO_3^- + 2e^- + 3H^+ = MnCO_{3(s)} + 2H_2O$

04.5 Mechanism discussion

Unexpected boosting result:

- Redox reaction leads to chemical composition variation
- Boosting amplifies such phenomenon
- Material composition variation leads to parameter variations in equivalent circuits
- Cell voltage E_{OCV} and cell inner resistance R_{cell}

Fitting correction:

- Use of two fitting parameters: δE and δR

 $E_{OCV-eff} = E_{OCV} + \delta E \qquad \qquad R_{cell-eff} = R_{cell} + \delta R$

- Well accordance by adjusted capacitive equivalent circuit
- This occurred due to the material composition variation inside MnO_2 electrodes

<u>Sources</u>: Ferrell and Vosburgh Journal of The Electrochemical Society 1951 Johnson and Vosburgh Journal of The Electrochemical Society 1953 Conway Electrochimica Acta 1993

<u>Sources:</u> Wu et al. In Preparation

04 Summary

pH-gradient cell system

pH gradient based osmotic energy 01 harvesting in CCS cycle

pH gradient cell composed of MnO₂ 02 electrodes and non-selective membrane

03 Faradaic process with capacitive behavior

04 Max net power density of 4.5 W/m² under boosting strategy related to the chemical composition variation in electrodes

© 05 Conclusion & Perspectives

Some future work to be further developed

05.1 Conclusion

Thesis Objective:

Investigate the <u>fundamental mechanism</u> of the CRED system, aiming to <u>enhance its energy performance</u> and broaden its range of <u>applications</u>.

05.2 CRED system scale up

Surface area increase

Along the flow:

- Increase of filling time for the entire system
- Impact on cell voltage and inner resistance due to the inhomogeneous ion concentration profile
- More efforts to fight against viscous dissipation

Perpendicular to the flow:

- Limited width related to lineic resistance of current collectors
- Structural design of co-flow or counter-flow

Stacking CRED in series

 $E_{OCV} = N.E_m + N.E_{elec}$

Stacking CRED units:

- Each unit comprises 1 CEM membrane with 2 capacitive electrodes
- Lower system cost compared with RED system stacking

05.3 pH gradient cell in DOC

Direct Ocean Capture (DOC):

Direct removal of Carbon dioxide from oceanwater is a method of capturing dispersed CO₂.

Acknowledgments

Jury members:

Pr. Marie-Caroline Jullien Pr. Cyril Picard

Pr. Virginie Lair Pr. Véronique Balland

Pr. Mikhael Bechelany Dr. Michael Levant

MIE team:

Prof. Annie Colin Dr. Corentin Trégouët (Associate Professor)

Dr. Youcef Brahmi Dr. Aderito Fins Carreira Dr. Milad Moazzam Dr. Marion Krapez Dr. Adrien Izzet Dr. Charlotte De Blois de la Calande Dr. Francesca Gambassi Dr. Biporjoy Sarkar

ESPCI 🖲 PARIS PSL 🕱 🕻

CBI team:

Isabelle Borsenberger Hélène Dodier Edwige Lay Mathieu Freville Timothée Derkenne Zhiyi Man Houyeme Mokline Ranim Elogb Alexandre Chhu

MIE

IPGG team:

Dr. Bertrand Cinquin Dr. Audric Jan

Thanks for your attention! Any questions?

